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Methods of approximating weak solutions of certain boundary-value problems in the theory of elasticity are proposed based on 
expanding the approximate solution in a finite series in basis functions which identically satisfy a homogeneous differential equation 
in the domain. The coefficients of the expansion are found by constructing a boundary analogue of the method of least squares 
(BAMLS). It is proved that the approximate solution thus obtained converges to a weak solution of the problem, Sufficient 
conditions for the stability of the BAMLS, easily verifiable by computational means, are derived. The construction of a boundary 
analogue of the collocation method (BACM) is proposed on the basis of the BAMLS, combined with discretization of the scalar 
product by quadrature formulae. The BACM obtained is convergent and stable and possesses better computational properties 
than the BAMLS• © 1999 Elsevier Science Ltd. All rights reserved. 

1. S T A T E M E N T  OF THE P R O B L E M  

Let f~ be a bounded domain in R ~ (n = 1, 2 . . . .  ) with boundary F, let k be a natural number, and let 
A be an elliptic differential operator of order 2k 

A =  ~, (-l)l i lDi(aij(x)DJ) 
IlL I j l ~k  

x = (x I . . . . .  x .  ) ¢ D., i = (i 1 . . . . .  in), J = (Jl . . . . .  .~ ), Di = ~li! 

(1.1) 

where v is the normal to F and gr(S) are given functions on the boundary, s ~ F; throughout, r = 
0 . . . . .  k - 1. It is required to approximate the solution of the generalized Dirichlet problem for the 
homogeneous differential equation 

Au(x)=O, x e f L  O'ulav'lr=g,(s), s~F  (1.2) 

We introduce additional assumptions concerning the data of problem (1.2) and consider the weak 
formulation of the problem. It will be assumed that F e fit °' 1 (for k --- 1) and F e fit k' 1 (for k > 1), 
that is, the functions defining the boundary of the domain in local coordinates belong to class C °A (for 
k = 1) and class C k'l (for k > 1) (see [1]), gr e W f - r -  1/2(1-.), ai j ~ C** (~), Iil, IJl -< k. We introduce a 
bilinear form 

and a subspace W2k(O) 

afv, u)=j Z aofx)l~(x)~ufx)ax (1.3) 
l i l . l j l~k 

V = Iv ~ W2k(f~) I O'u/~h," It=0} 

We shall assume that the form A(u, u )  is V-elliptic and bounded• The weak formulation of problem 
(1.2) is to determine a function u e W~(fl) such that 
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A(v, u)=0,  Vv eV, u - w e V  

weW~(f~), ~wlbv" Ir=g,(s), s e r  

(1.4) 

2. R E P R E S E N T A T I O N  OF THE A P P R O X I M A T E  S O L U T I O N  

We shall write an approximate solution of problem (1.4) in the form 

N 
u~(x) = ~, amtpj(x) (2.1) 

j=l 

where the functions q~j(x) (i = 1, 2 , . . . )  are classical linearly independent solutions of the homogeneous 
differential equation Au(x) = 0. We shall call them global basis functions. 

To abbreviate the formulae, we introduce the notation 

fl'flo = I .L  

Summation over r is performed throughout from zero to k - 1. 
The determination of the coefficients of expansion (2.1) reduces to approximating the boundary 

conditions of problem (1.2). The linearity of the boundary-value problem, in combination with previous 
results [2], implies the estimate 

_H ar,,,,ll 
I1" -".L const 2Lr~gr - ~ v  [[, (2.2) 

We will find the coefficients of expansion (2.1) subject to the condition of the boundary analogue of 
the method of least squares method (BAMLS) 

i ~rub /II 2 
min ~ gr 

otN,.., °.# - -'~-7- L (2.3) 

3. THE C O N V E R G E N C E  OF THE S O L U T I O N  BY THE BAMLS 
TO THE EXACT S O L U T I O N  

In relation to the convergence of an approximate solution (2.1), obtained using the BAMLS in the 
form (2.3), to a weak solution of problem (1.4), we shall assume that the formA(~, u) defined by (1.3) 
satisfies the following condition. Let ~ be a sequence of bounded domains in R n with boundaries Ft 
satisfying the conditions 

r t e f f t  °'n for k= l ,  r t e f f t  k'l for k > l  

~ c ~ t ,  [2t+l c ~ t ,  limmes(~'lt/~'l)=O 
i' -..~.oo 

(3.1) 

Throughout, t = 1, 2 . . . . .  We shall assume that the coefficients aij(x) of the formA(a~, u) satisfy the 
conditions aij(x) e C*~(~z), [i I, IJ I <~ k. We introduce notation 

Let the forms At(m, u) be V-elliptic and bounded 

A,<o. ",lloH ,, Ia,(u. u)l < P,IIoH,,N'flo, (3.2) 
where positive constants a and [~ exist such that a < at and [~ > ISt. 
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The following auxiliary propositions generalize certain propositions established in [3] for A = A (where 
A is the Laplacian) and k = 2 and n = 2. 

Lemma 1. Let  u ~ 14"g~(f~) be a weak solution of problem (1.4) and suppose a sequence of domains 
D.t satisfying conditions (3.1) and (3.2) exists. Then, for any 8 > 0 a bounded domain f2' in R ~, and a 
function Uo ~ C*~(I) ') exist such that 

"~c~', Auo(x)~O, xeO', ~u-uda. <~. 

Lemma 2. For any function z e wzk(f~) and any positive number e a domain ~" and a function z 
C~(f~ ') exist such that f~- C f~', Az(x) - O, x ~ ~',  and 

] br~ OrZ[ 

Thus, the problem of the convergence of the BAMLS reduces to the problem of approximating the 
classical solution of  an elliptic differential equation. 

We will consider an example which illustrates the construction of a system of global basis functions 
leading to a convergent BAMLS. 

The Dirichlet problem .for a polyharmonic equation. Various problems of the theory of  elasticity can 
be reduced to a Dirichlet problem for harmonic or biharmonic equations: the twisting of a prism, the 
buckling of a plate (with prescribed deflection and bending angle at the boundary), a plane stressed 
state and plane deformation, We will consider the general case: approximating the solution of the 
generalized Dirichlet problem for a polyharmonic equation. 

Let A be the n-dimensional Laplacian. We will consider problem (1.2) for A --- A k. Note that the 
coefficients k aij(x ) of the formA(~,  u) corresponding to the polyharmonic operator A are constant and 
can be continued into Rn/f~. We now verify that the sequence of domains (3.1) and the form A(~, u) 
satisfy conditions (3.2). Without loss of generality, we will confine our attention to the case n = 2, 
k = 2. In that case 

[ a~v a2u ~v ~2u 02v a2uq 

and the fact that the formAt(u, ~) is W22'°(~2t)-elliptic is established using the Friedrichs inequality. Let 
d t = diam f~t. If v e W~'°(~t), we have an estimate 

,,., =[d;/4+d?/2+l]-' 
where I " I t~ is the norm defined by the highest-order derivative. Then, since, JAr(v, a~) ] = I~ it follows 
that 

la,(u, u ) l ~ a ,  lu 2 
(3.3) 

It follows from (3.1) that 0 < d < dt+l < d and a positive number o~ exists such that t~ > tx, and the 
first condition of  (3.2) is satisfied. The second condition also holds. 

We will now consider the convergence of  the BAMLS. Let u(x) denote a weak solution of problem 
(1.2) forA ---- A k. Choose any positive number e. By Lemma 1, a bounded domain f~' in R n and a function 
ff e C**(f~') exist such that 

c ~ ' ,  Ak~(x) ~ 0, x e n ' ,  lu - u~ta' < e (3.4) 

The function u(x), which is polyharmonic in 12', may be expressed by Almansi's formula [4] as follows 
(throughout, summation over m is performed from zero to k - 1) 

[, ,]- 
~(x) = 5'.1x 12- ~m(x), Ix 12"= E x 

on L I = I  
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where U,n(X) are functions harmonic in fg. Let {Pq(x) }q= 1, 2... denote the system of harmonic polynomials 
constructed in [5]. It was proved there that any harmonic function may be uniformly approximated to 
any degree of accuracy by a certain linear combination of elements of the system {Pq(x)}q=l, 2 .... . Let  

M 
£ ~  = E aq.eq(x) 

q=l 

Let ~'mM ~_Um(X) as M ---> oo uniformly in fg, m = 0 . . . .  , k - 1. Then [6] for any domain ~2 such that 
c fg,/YEmM-'->/Yfi'm(X) as M ---> oo uniformly in fg, m = 0 . . . .  , k - 1, l i I = 0, 1 . . . . .  
For the selected value of e, an N = kM exists such that 

M 

I ~ - ~ i r ~  <t:. ~,,.(x)=E Ixl 2" E ,~,,,,,t,q(~) (3.5) 
m q=l 

It follows from the triangle inequality, (3.4) and (3.5) that I fuN- u I I~ < 2e. The Embedding Theorem 
for manifolds [Ii] implies the limit 

~,  3v" ~r const, e (3.6) 

Taking into account that the equality ffu/av r = gr holds on F, we deduce from (3.6) that 

la%,, J' 
<c°',s,',:' 

We can strengthen this inequality by replacing uN(x) by 

M 
uN(x) = • Ix 12: ~"mM, Emu = $'- ao,~tPq(X) (3.7) 

m q=l 

here N = kM and the coefficients aqm N are determined from the condition of the BAMLS (2.3), which 
in this case has the form 

aqm N, q = l  ..... min, m=0 ,  k - I  E ]aru'v ~' u .... ' ~[--~-~-- g'L 

Then we obtain the estimate 

la~u ~ ~2 ~2 
~ ~ [ - ~ - -  g l r  < c°nst" 

We write expression (3.7) in the form 

(3.8) 

Let us renumber the terms on the right of (3.9). Le t j  = j(m, q) (j = 1 , . . . ,  N) and suppose 

ajN = aqm N, Cpj(x) =4 x 12m Pq(x) 

Then formula (3.9) takes the form of the expansion of the approximate solution in a series in the global 
basis functions (2.1). It follows from estimates (2.2) and (3.8) that 

~u N - u l n a 0  as N-->** 

This shows that the approximate solution given by the BAMLS for the weak formulation of 
the generalized Dirichlet problem for a polyharmonic equation indeed converges to the exact 
solution. 

M 
UN(X) = Y. F-, aqmN Ix I zm t'q(X) (3.9) 

m q=! 
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We will proceed as follows: We will consider the numerical implementation of the BAMLS, prove 
that the system of linear algebraic equations of the BAMLS is solvable and derive computationally simple 
conditions for the global basis functions which are sufficient for the BAMLS to be computationally stable. 
Then, on the basis of the convergent and stable boundary analogue of the BAMLS, we will construct 
a convergent and stable boundary analogue of the collocation method (BACM), to approximate weak 
solutions of problem (1.4), with better computational properties than the BAMLS. 

4. N U M E R I C A L  I M P L E M E N T A T I O N  O F  T H E  B A M L S  

Conditions (2.3) lead to a system of linear algebraic equations 

M(N)a (N) = g(~) (p, q = 1 . . . . .  N) (4.1) 

where the matrix M (N) and the vector g(N) have components 

Theorem 1. System (4.1) is uniquely solvable for any natural number N. 
The proof of this theorem is analogous to the proof that the system of the BAMLS is solvable in the 

case of the approximation of a very weak solution of a biharmonic problem [2, 3]. It can be shown that 
M (N) is the Gram matrix of a system of global basis functions in a Hilbert space with scalar product 
defined by 

5. N U M E R I C A L  STABILITY OF THE BAMLS 

In the numerical implementation, the elements of the matrix M (N) and the vector g(N) on the right- 
hand side of system (4.1) are determined to within a certain error, which arises when the definite integrals 
are computed using quadrature formulae (when n = 2) or cubature formulae (n > 2). In practice, 
therefore, instead of system (4.1) one solves a system with a "perturbed" matrix and right-hand-side 
vector 

(M¢#) + 8M(N))bfN) = gfN) + 8g(#) 

The solution UN(X) obtained using the BAMLS is replaced by the solution 

N 
~N(X) = Y. bjN%(X) 

j=l 

Let us investigate the stability of the BAMLS in the sense of the definitions of [7]. Let J [ • J [ denote 
the Eucliden norm in R N. 

Definition 1. The BAMLS is said to be stable if constants c1, c2, c3, independent of N, such that, for 
I I~SM(N) I [ ~< Cl and any ~(N), the following inequality holds 

The stability of the BAMLS depends on the choice of the system of global basis functions. 

Definition 2. A system of functions {(pj(x)}j=l, 2,.. is said to be strongly minimal in a Hilbert space if 
a positive constant ~ such that ~min, N ~ ~ for all natural N, where ~-m, N is the minimum eigenvalue 
of the Gram matrix of the first N elements of the system {q~i(x)}j=l, 2 .... in the Hilbert space. 

The following theorem holds [7]. 
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Theorem 3. Let the domain c0 C R n be such that y e fit t'l, (o- C ~,  l being a non-negative integer with 
l < k, and let the system of global basis functions {q)j(X)}y=l, 2 .... be strongly minimal in IT/e(y). Then 
the BAMLS in the form (2.3) is stable. 

Proof. The minimum eigenvalue of the Gram matrix of the first N functions in the system {q~(x)}j--.1, 2,... 
is obtained using the variational principle for describing eigenvalues of Hermitian matrices [8] 

~'min, N----min[X (,,. ,%,'] (5.,) 
P*OLp, q 

Throughout, summation with respect to both p and q is carried out from 1 to N. 
We note that 

~, (q)p, ~q)r(Xp(Xq = IZN[2r, ZN(X) = ~, ap(pp(X) (5.2) 
p,q P 

Obviously, the function z~x) is a solution of the boundary-value problem 

a,,(x)=o, x a, (5.3) 

Then it satisfies an estimate of type (2.2) 

IZ.lii "const-Y, I~'z-~l (5.4) 
r l civr L 

It follows from the Embedding Theorem for manifolds that 

I',<i. > c°nst.HM, 1,v 

Estimate (5.4) yields 

gzs~wzt(~) ~< const-• I~rzFll 

Squaring both sides of this inequality and taking into account that 

Cr = ~" Crem ~ L  ~, (C r.l-c m)=k~,  C r 
r~ Fn 2 r ,  m r 

we obtain 

r l ~ v r L  

We replace the function zN(x) in (5.5) by its expression in terms of the global basis functions (5.3) 
and bear in mind the definition of the scalar product (-,.)r. This gives 

2 ~.< . u 2 IMw,<,> eonst" ]ZN]r 

This inequality holds for any values of al . . . . .  aN. Dividing both sides by I~ and taking the minimum 
of both sides over all 13 ~e 0, we have 

r P*°|p IN(,r) ~*°lp r [5-1 

where C is some positive constant. By the assumption of the theorem, the system of global basis functions 
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(tp/.(x)}j=l, 2 ... is strongly minimal in W2(y). It then follows from (5.1), (5.2) that a positive number 
exists such [hat, for all natural N 

go < " ap(pp w~(~) 

But then wc deduce from (5.6) that for all natural N 

~'0 < minl~'-ct,9,12 ~ -' =~,.~o. 
l~*Olp Ir 

that is, the system {gj(x)}/=l, 2 .. is strongly minimal in a Hilbert space with scalar product  (-,.)r. Using 
Theorem 2, we conclude that ' the BAMLS in the form (2.3) is stable. The theorem is proved. 

Remark 1. The theorem just proved yields simple sufficient conditions for the stability of the BAMLS. For example, 
it is sufficient to orthonormalize the system of global basis functions in W2(y). The choice of a domain co with a 
sufficiently simple boundary y facilitates the orthonormalization procedure. 

Remark 2. It would have been possible to orthonormalize the system of global basis functions from the start in 
the Hilbert space with scalar product ( . , . )r. However, this approach has several drawbacks. First, the 
orthonormalization procedure may prove to be numerical unstable. Second, this approach turns out not to be 
effective in solving problems with a variable boundary. It would thus be necessary to re-orthonormalize the system 
of global basis functions for every change in the boundary F. But if one chooses a certain domain to containing 
the varying domain D in its interior, and carries out the orthonormalization in W~(y), then the BAMLS will be 
stable for any variation of the boundary F. 

6. C O N S T R U C T I O N  OF A S Y S T E M  OF L I N E A R  A L G E B R A I C  
E Q U A T I O N S  F O R  T H E  BA MLS  

We will write the system of linear algebraic equations of the BAMLS (4.1) as follows: 

" OrtPp Or) gr, ~ P = 1 ..... N 
~ r  q 

r r 

Suppose that the sequence of domains {Qj}y=I . . . . .  j forms a cover of the boundary F: F C Q1 ~<. • • 
~< Qj, and that on the cover {Qj}j=l . . . . .  j we are given a partition of unity 01j}j=l . . . . .  j, TIj e C~0 
(Qj I> F), 11 + . . .  "q;-- 1 on F. We introduce the notation 

Uyl<l, ly kl} 

R" ily'll < l.-l<y. <o} 

0<y. <,}. 
Let  Tj be a mapping such that Tj: Q+ ---> Qi +, T/: Q- -~ Q~ (throughout, j = 1 . . . .  , J; summation 

over j  is carried out from 1 to J). Let  us consider the computation of the matrix elements and the vector 
of the right-hand sides of  the system of  the BAMLS. 

The scalar product  in the Hilbcrt space W~(F) for real s is defined as [9] 

= 
J w~tR "-w) 

Allowance is made in W~2(R n-l) for the definition of the scalar product using Fourier transforms. We 
obtain 
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m 

@ j ( ~ =  Ie-KC;j(y')wj(y')dy ". w j=u i ,  v j 
mt~;j =m(o,o 

= ~IY, +. . -  + ~ . - l Y . - ,  

(the bar denotes complex conjugation). Written out in full, the system of linear algebraic equations of 
the BAMLS has the form 

k-r-112 A A 

q r j R~-I 

, ) 
A 

(6.1) 

p=, ..... u 

Note that the construction of the system of the BAMLS is not simple. On the basis of a convergent 
and stable BAMLS, we will now derive a convergent and stable BACM which will have better 
computational properties. 

7. C O N S T R U C T I O N  OF A BACM TO A P P R O X I M A T E  
THE S O L U T I O N  OF THE D I R I C H L E T  P R O B L E M  

We will consider two cases of practical importance: when the Fourier transforms of the global basis 
functions and the boundary conditions have already been found (and the BACM will be constructed 
for the Fourier transforms), and when the Fourier transforms of the global basis functions and the 
boundary conditions are computed using cubature formulae (and the BACM will be constructed for 
the basis functions themselves). 

7.1. Construction ofa BACMfor  Fourier transforms. Let us evaluate the integrals occurring in system 
(6.1) of the BAMLS using cubature formulae of order Lr with coefficients Air and mesh points ~r 
(l = 1 , . . . ,  Lr). We define a subscript t = t(r, l), with t = I . . . .  , M, where M = Lo + • • • +Lk-1, and 
put 

= , 5".Y.R~o = Rpq, X,Y.rpo = rp 
r j  r j  

(7.1) 

where Rmq, rp,j are the errors of the cubature formulae. Then the system of the BAMLS has the form 

~. ~, ~'/q/a.it~pjt + RIX 1 ) = ]~ ]~ ~pjra~ jm + rp (7.2) 
q [ . j  t=l j t=l 

Consider the matrices and vectors 

We express (7.2) as 

( ~ )  * (N )  ~ * 
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where the matrix M* is the complex conjugate of M. Define a block matrix K (~ and block vector h (~ 
by the formulae 

I';1 [:] h'"'-- 

Then system (7.2) becomes 

{ (K~K0V3+R~ } acre = 0KO~) "h~+r~  (7.3) 

Note that systems (7.3) and (4.1) are equivalent, i.e. the matrix M (~0 and the right-hand-side vector 
g(~0 of system (4.1) of the BAMLS admit of the following representations 

M¢~ = (KOV~)*KCS'~ + R 0~, g¢~ = (KCS))'h ¢~ + r¢~ 

Together with system (7.3), we consider the system without the matrix R (A0 and the vector r (N), 
containing the computation errors of the definite integrals 

0Ktm) "K~¢m = (K~m) "hem (7.4) 

We choose the number of mesh points in the cubature formulae so as to satisfy the equality JM = N, 
that is, so that K (~ is a square matrix. Then the solution b (~ is identical with the solution of the system 

K 0 ~  0~ = h v0 (7.5) 

System (7.5) is the system of a BACM with mesh points ~ for the Fourier transforms of the basis 
functions and boundary conditions. 

We will now consider the convergence and stability of the BACM just constructed. Note that the 
BACM yields a sequence of approximate solutions fiN(x) = bul l (x )  + . . .  + bNNCpN(X) which is generally 
different from the sequence UN(x) of approximate solutions obtained by using the BAMLS. We will 
derive the sufficient conditions for convergence of the BACM. We have to prove that [ ] fin - UN ] [ r 
0, as N ~ oo. Then, since [ [ u s -  u I [ r ~ 0 as N ~ .o, where u(x) is the exact solution, it will follow that 
the approximate solutions produced by the BACM convergence to the exact solution. System (7.4), whose 
solution is identical with that of the system of the BACM (7.5), may be regarded as the system of 
a BAMLS with a "perturbed" matrix and right-hand-side vector. The matrix and vector of the 
'perturbations' are - R  (~ and - r  (~, respectively. The results of Section 5 concerning the stability of 

the BAMLS imply the following. 

Theorem 4. Let the cubature formulae (7.1) be such that I IR<~011 ~ 0, I I r<~l I ~ 0 as N ~ oo, and 
assume that the system of global basis functions {tp/(x) }i_- l, 2 .... is strongly minimal in a Hilbert space 
with scalar product ( , ) r .  Then 

IlfiN- unlit ~ 0 as N --~ ** 

This establishes the convergence of the BACM. We can now establish the advantages of using the 
BACM instead of the BAMLS. Let ~t(M) denote the number of singularities of the matrix M relative 
to ] l" ] [. Using Weyl's theorem [8] on the perturbation of the eigenvalues of Hermitian matrices, we 
can prove the following. 

Theorem 5. Let the cubature formulae used to compute the definite integrals in system (6.1) be such 
that [ I RCA01 I ~ 0, I I r ~ I I ~ 0 as N ~ oo. Then 

limg(K ¢~0) = lim~la(M~) as N ~ o .  

Z2. Construction of  a BACM for the global basis functions. We will now consider the possibility of 
constructing a BACM to compute a system of linear algebraic equations with a matrix and right- 
hand-side vector containing (unlike those in Subsection 7) not the Fourier transforms ~(y')%~(y'), ~.(y'), 
g,j(y') of the functions, but the functions themselves, evaluated at points corresponding to certain points 
of the boundary F. 
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/~r/(~..~/r) : I e - ~ i ~ Y ' ; j ( y ' ) t p p d ( Y t ) d y  ", ~pr/(~.~/r):  Je-~;l'f;j(y')gd(Y')dy" (7.6) 
s(o,I) s(o,l) 

We will evaluate the integrals in (7.6) using cubature formulae with L mesh points Yl, • • •, YL and 
coefficients B1 . . . . .  BL. Put 

= 

Then system (6.1) of the BAMLS has the form 

I.. L _ _  L . [ Lr f L L "~ 

where/~eq,J and red are the total errors in computing the definite integrals. 
We now proceed as in the derivation of system (7.4) for the BACM, omitting the errors of the 

quadrature formulae and considering the corresponding system In that system, we invert the order 
of summation over l = 1 . . . . .  Lr  and tl, t2 = 1 , . . . ,  L, introducing the following matrices and vectors 

]Fqd:{*qdlt}l=l....,~,t=l,...,L Hd={~dltIl=l,...,Lr,t=l,...,L 
fvd =FvdeL, hrj :Hde / . ;  eL:J1 ..... 1 ] ~ R  L 

We obtain 

~'.~ ~. f~fffqdb (~') = ~ ~ f~dh vd (7.7) 
q r  I r j  

We now renumber the vectors fqd, h~. as fq,,, h,, using an index transformation t = t(r, j), where t = 
1 , . . . ,  M, with M = kJ. Transforming further, taking the renumbering into account, we obtain 

= E tp, h, (7.8) 
q tffil tffil 

Put 

Then system (7.8), in matrix notation, is 

h = h[~-~-M} F = [fl I...I f~t] 

r F b t ~  = l~h (7.9) 

Choose the number of mesh points in the cubature formulae so that J(Lo  + • • • + L k -  1) = N. Then 
the matrices F and F* are square matrices of dimension N, and the solution of system (7.9) is identical 
with that of the system of the BACM 

Fb(~ = h 

Note that the elements of the matrix F and the vector h depend on N. 
All the results of Subsection 7.1 as to when the approximate solution computed by the BACM 

converges to the exact solution, as well as the stability of the BACM, remain valid for the BACM 
constructed here. 
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8. C O N C L U S I O N  

The approach proposed above is general and suitable for a large range of problems (see [10, 11]). 
We have developed stable and convergent BAMLS and BACM to approximate solutions of Dirichlet 
boundary-value problems for harmonic and biharmonic equations, for the case in which the smoothness 
of the boundary and of the functions given on the boundary do not enable us to formulate a weak 
boundary-value problem [12, 13]. When constructing the BAMLS and BACM for such problems, use 
is made of the so-called "very weak formulation of the problem," or of the formulation of the problem 
in weight spaces of the functions given on the boundary [1, 2]. 

Compared with existing methods for approximating solutions to many problems, this approach enables 
us to reduce the Euclidean dimension of the problem by 1, due to the transition to the boundary of 
the domain; this considerably facilitates the algorithmization of the method. Unlike the finite-element 
method and the grid method, there is no need for discretization of the domain, which also facilitates 
the algorithmization process and is an advantage in solving problems with variable boundaries (optimal 
projection problems). Unlike the boundary-element method, this method yields a solution for the entire 
domain, without additional computations. Its computational stability yields an approximate solution 
of satisfactory accuracy. 
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